High Efficiency Pulse Compression Transmission Grating

T-1000-1040 Series

T-1000-1040 series lithographically patterned diffraction transmission grating is designed to be used in demanding industrial applications. It is characterized by high efficiency, low polarization sensitivity and high power handling. Gratings produced by Finisar undergo extensive quality assurance, have proven reliability track record and competitively priced.

The polarization independent transmission grating has 1000 lines/mm and designed to operate near 1040 nm central wavelength at 31.3° angle of incidence (AOI). Extended wavelength range performance and angular sensitivity information is provided below.

Extended operational range

The grating may operate over broader wavelength range provided that suitable anti-reflective coating and angle of incidence is used. The plot below shows simulated performance* over extended range assuming fixed input angle (designed Littrow angle of 31.3°), not accounting for AR coating losses. Optimal input angle for each wavelength is shown on the right.

simulated performance shown (for guidance only)
Optical Description	Value	Units
Line Density | 1000.0 | Lines/mm
Line Density Uniformity | 0.001 | Lines/mm
Angle of Incidence (AOI)\(^1\) | 31.3 ±1° |°
Wavelength Range | 1040 ±20 nm | nm
Optimal polarization | Any | |
Diffraction Efficiency\(^2\) | ≥ 94 (average polarization) | %

Notes:
\(^1\) Optical grating performance will remain substantially similar over a 5° variation in angle of incidence.
\(^2\) Worst case in the operational wavelength range for average polarization.

Mechanical Dimension tolerances | ±0.2 for grating size and width |
Substrate Thickness | 0.675 ± 0.050 mm or 0.95+/− 0.05 mm |
Material | Fused silica, dielectric layers |
Scratch/Dig\(^3\) | 60/40 standard, 40/20 and 20/10 custom |

Note:
\(^3\) As per MIL-PRF-13808 in the clear aperture; no requirements outside of the clear aperture.

<table>
<thead>
<tr>
<th>Substrate dimension options</th>
<th>Part Number</th>
<th>Substrate width, mm(^4)</th>
<th>Substrate height, mm(^4)</th>
<th>Clear aperture width, mm(^5)</th>
<th>Clear aperture height, mm(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-1000-1040-3212-94</td>
<td>31.8</td>
<td>12.3</td>
<td>30.8</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>T-1000-1040-3225-94</td>
<td>31.8</td>
<td>24.8</td>
<td>30.8</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>T-1000-1040-13012</td>
<td>130</td>
<td>12.3</td>
<td>125</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>T-1000-1040-13025</td>
<td>130</td>
<td>24.8</td>
<td>125</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>Custom dimensions</td>
<td>Any rectangle fitting within 135 mm diameter circle (e.g. 130x20 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
\(^4\) Width is perpendicular to grating grooves, height is along the grating grooves.
\(^5\) Clear aperture is centered on the substrate.

Typical Optical Layout
The transmission grating is designed to operate in Littrow configuration, where the angle of incidence and diffraction are the same for the central operational wavelength. Light is dispersed in the plane perpendicular to the grooves.